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Abstract

The claim that parsimony can be statistically inconsistent remains the chief criticism of the cladistic approach, and also the
main justification for alternative model-based approaches such as maximum likelihood and Bayesian inference. Despite its refu-
tation in the 1980s, this persistent myth of parsimony’s Achilles’ heel is entrenched in the primary literature, and has metasta-
sized into textbooks, as well. Here, I review historical controversies, and offer three short arguments as to why statistical
consistency is not only irrelevant to systematics, but to empirical science in general.
© The Willi Hennig Society 2017.

“One does not “justify” a method by showing that there is an

extremely special case in which it does its work well; nor does

one “refute” a method by showing that there is another spe-

cial case in which it makes a hash of things.”

(Sober, 1988, p. 76)

History

In 1978, Felsenstein (p. 402, in a paper whose short
title was “misleading parsimony methods”) asserted:

“Phylogenies constructed by the proper maximum likelihood

method typically have the property of consistency. A statistical

estimation method has the property of consistency when the

estimate of a quantity is certain to converge to its true value

as more and more data are accumulated. . ..parsimony meth-

ods. . . do not possess the property of consistency in all cases.”

As Farris (1983, p. 15) said, “other things being equal,
it would be desirable if an estimate would converge to
the correct value as the amount of evidence increased,”
and no one disputes that Felsenstein’s artfully qualified
(“proper,” “typically,” “in all cases”) assertions are
untrue—of course parsimony could give a wrong
answer, and of course an estimation using a model
that is known to be true will converge on “the correct

value”. Rather, what is at issue is whether the property
of consistency is empirically relevant to phylogenetic
inference:

“Consistency is a logical relationship between an estimation

method and a probability model. In the hypothetical case

imagined by Felsenstein, his method would have obtained the

right answer, but whether the method would work in practice

depends on whether the model is accurate. If it is not, then

the consistency of the estimator under the model implies

nothing about the accuracy of the inferred tree.”

(Farris, 1983, p. 16)

Although Farris’s (1983) criticisms of Felsenstein’s
consistency argument frequently have been miscon-
strued as an objection to Felsenstein’s particular
model (cf. Yang, 2014), Farris’s point in this state-
ment was that although “likelihood” as a general
framework may produce consistent results in the
abstract, whether or not a particular maximum-likeli-
hood (ML) analysis of empirical data results in the
true tree is entirely dependent on the accuracy of its
particular model of character evolution, relative to the
way evolution actually went (see also Farris, 1986).
Parsimony can be inconsistent because any method
can be inconsistent under the wrong circumstances.
Inconsistency is thus not a potential shortcoming
unique to parsimony.
In the early 1990s, however, there began to appear

in the literature a number of less circumspect and
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more sweeping amplifications of Felsenstein’s innuen-
dos about parsimony’s supposed flaw:

“. . .parsimony, when based on discrete characters, can fail,

under certain conditions, to be a consistent estimator of the

phylogeny.” (DeBry, 1992)

“Parsimony has furthermore been shown to be statistically

inconsistent (to arrive at the wrong answer at statistical signif-

icance) in a wide range of relatively realistic schemes.”

(Sidow, 1994)

“The principal objection to parsimony is that under some

models of evolution it is not consistent, that is, even if we

add more data it is possible to obtain the wrong tree.”

(Page and Holmes, 1998, p. 191)

Advocates of model-based approaches sowed further
doubt by contriving simulations that showed various
additional circumstances under which parsimony might
behave inconsistently (cf. Zharkikh and Li, 1993; Kuh-
ner and Felsenstein, 1994; Takezaki and Nei, 1994;
Kim, 1996; Huelsenbeck and Lander, 2003).
In 2003, Goloboff suggested that the tide of parsi-

mony-bashing on the grounds of consistency was
ebbing, due to a variety of demonstrations that ML
could also be inconsistent. If invocation of consistency
was indeed diminishing, it is likely because it was
being supplanted by references to a putative causal
mechanism—”long branch attraction” that resulted in
inconsistent hypotheses (cf. Hendy and Penny, 1989;
Bergsten, 2005). Yet Felsenstein (2004, p. 121) cited
consistency in dismissing parsimony out of hand:

“The inconsistency of parsimony has been the strongest chal-

lenge to its use. It becomes difficult to argue that parsimony

methods have logical and philosophical priority, if one

accepts that consistency is a highly desirable property.”

Many of the above citations are 20+ years old, and it
may seem like this controversy ought to be ancient his-
tory. But the invocation of inconsistency as a problem
for phylogenetic analyses persists in the literature (Lar-
tillot, 2015; McTavish et al., 2015; Kjer et al., 2016),
and as the social media outcry over the January 2016
editorial in Cladistics (The Editors, 2016) showed,
there remains a great deal of animus and misunder-
standing about the interplay between science and phi-
losophy regarding phylogenetic inference (cf. Simon,
2016). Furthermore, the droning of this anti-cladistic
mantra has been so steady and prolonged that it has
become established as dogma in recent textbooks:

“. . .long branches attract. Under these conditions, maximum

parsimony is likely to yield the wrong phylogenetic tree.” By

contrast, “Maximum likelihood analysis takes into account

the differences in branch length. . .and is more likely to find

the correct phylogeny.” (Futuyma, 2013, p. 35)

“. . .parsimony can be inconsistent over some portions of the

parameter space; in particular, the method tends to suffer

from the problem of long branch attraction.”

(Yang, 2014, p. 170)

“. . .parsimony approaches are not without problems. The

worst of these problems is that parsimony is not a consistent

estimator; that is, an estimation procedure that, given enough

data, will ensure that we get the right answer. Thus, if we use

parsimony to reconstruct a phylogeny, it is possible for us to

get the wrong tree, no matter how much data we have avail-

able.” (Bergstrom and Dugatkin, 2016, p. 153)

“. . .maximum parsimony methods may perform poorly when-

ever some branches on the tree are much longer than others,

because parsimony will tend to cluster long branches

together.” (Graur, 2016, p. 211)

“While parsimony often gives the correct result, it does a

poor job of estimating the phylogeny in some situations, in

particular when there is a lot of homoplasy on the phylogeny

and when evolutionary rates vary among branches of the tree.

Those problems motivate methods that use statistical methods

as likelihood, which is explained in the appendix.”

(Futuyma and Kirkpatrick, 2017, p. 411)

Despite this disparagement of parsimony, when these
books endeavour to explain phylogenetic inference,
they invariably do so with cladistic terminology, such
as synapomorphy vs. symplesiomorphy, and employ
parsimony as their heuristic optimality criterion.
Superficial explanations of ML and Bayesian
approaches are relegated to sidebars or appendices
(sometimes even nonexistent ones; cf. Bergstrom and
Dugatkin, 2016; p. 150). Implying that parsimony is
now viewed as obsolete, Baum and Smith (2013, p.
207) said, “. . .the scientific community generally
expects researchers to use maximum-likelihood or
Bayesian methods when analysing molecular data.
Nonetheless, because parsimony is effective for many
data sets, is less computationally demanding, and is
easier to understand, it is still widely used in educa-
tional contexts and for preliminary data exploration.”
It is time, once and for all, to lay this biased non-

sense to rest. If there is a reason to prefer model-based
phylogenetic methods over parsimony, it has nothing
to do with statistical consistency, for reasons explained
below.

How big is the Felsenstein zone?

“. . .it is difficult to decide where the cutoff between reality

and fantasy exists.” (Huelsenbeck, 1995, p. 22)

Most of the evidence fuelling debates over whether or
not phylogenetic methods are consistent has involved
studies in which the data are simulated according to a
known model, and then the various methods are tested
to see if they can recover the “true tree”. Huelsenbeck
and Hillis (1993) named the part of conceptual tree
space in which methods are inconsistent the Felsen-
stein zone. Advocates of models like to highlight the
success of “more realistic” models versus parsimony
over a broader portion of this space, whereas advo-
cates of parsimony observe that the absolute size of

2 A.V.Z. Brower / Cladistics 0 (2017) 1–6



the Felsenstein zone appears to be small (Albert et al.,
1993). (For in-depth discussion of the current state of
affairs in model-based versus cladistic simulations, see
Goloboff et al. (2017).)
Regrettably, none of that has much to do with

assessing the reliability of phylogenetic inference of
relationships among actual taxa. As Felsenstein (1983,
p. 188) said, “The difficulty we face is that we know
too little to specify a realistic model of evolutionary
change. Even if we could do so, it would not be math-
ematically tractable. In this sense the advocacy of total
realism is a counsel of despair.” What was true in
1983 remains true today. Thus, although Kim’s (1996,
p. 46) observation that “the relevant question is not
whether an estimator is consistent or inconsistent, but
how common the conditions are under which a phylo-
genetic estimator is inconsistent” may be answerable
within the make-believe, Platonic realm of model com-
parisons, in the world of actual phylogenetic data,
whose particular evolutionary paths are shrouded by
historical contingency, the answer is always: “there is
no way to tell” (cf. Farris, 1999). Conversely, when we
infer an empirical tree for some group, we can know
neither that our optimality criterion behaved consis-
tently, nor that the tree selected by our optimality cri-
terion is correct. Brower (2016) has explored the
logical contradictions of the realist approach to phylo-
genetic inference.
In the absence of verifiability, another, perhaps more

empirically pertinent way to compare the success of
alternative methods is to assess how often they give
different answers for a given set of real phylogenetic
data. In particular, if “realistic” models are thought to
perform better than parsimony (cf. Huelsenbeck et al.,
2011), then we might expect phylogenetic results
obtained from both methods applied to the same data
to differ in cases where parsimony is suspected to
behave inconsistently. Rindal and Brower (2011)
assessed this question in a meta-analysis of 1000
empirical articles in Molecular Phylogenetics and Evo-
lution. Of 411 studies employing both parsimony and a
model-based approach, only three had topological dif-
ferences which their authors deemed significant. Smith
(2013) suggested that more differences might be found
in studies of more inclusive taxa, but Brower and Rin-
dal (2013) showed that even those did not differ signif-
icantly due to the alternative analytical approaches
they employed.
Of course getting the same topology twice does not

corroborate the result per se, nor does it suggest that
the tree is more likely to be “true” (contra Kim, 1993).
But if results are the same from the data analysed by
parsimony and by a model intended to correct for
characters that mislead parsimony, then either those
unruly characters do not exist in that dataset, or they
have also misled the model-based analysis. Whichever

is true, this empirical meta-analysis showed that the
effective size differential of the Felsenstein zone
between parsimony and model-based methods appears
to be inconsequential. Thus, claims that models out-
perform parsimony are unsubstantiated by patterns of
relationships among actual taxa, arguably the most
relevant criterion for comparing the success of alterna-
tive methods.

Empirical indeterminacy and the necessary insufficiency
of models

“As far as the laws of mathematics refer to reality, they are

not certain; and as far as they are certain, they do not refer

to reality.” (Einstein, 1922, p. 1)

Statistical simulations are conducted in a contrived
closed system in which parameters are defined a priori
and results may be tested against known values for
accuracy. Only under such circumstances is it possible
to ask how often a given method recovers the “true
tree.” However, when performing empirical studies,
because the true history of the taxa is unknown, there
is no way to assess accuracy relative to the actual pat-
tern of historical diversification. Farris recognized this
long ago, (1986, p. 14) noting”(c)riticisms by Felsen-
stein that parsimony analysis may be statistically
inconsistent lead to an equivalent criticism of all statis-
tical methods, and so are of no value for evaluating
phylogenetic methods”. Similar caveats were echoed
by: Sober (1988, p. 171), “If the assumed model is in
fact false, there is no guarantee that the method will
converge on the truth when applied to the real world”;
Hillis (1995, p. 4), “All methods are consistent when
their assumptions (explicit and implicit) are met, and
all methods are inconsistent when these assumptions
are violated sufficiently”; Swofford et al. (1996, p. 427,
footnote), “a maximum likelihood method will guaran-
tee consistency only if evolution proceeds according to
the assumed model”; and even Felsenstein himself
(2004, p. 272), “likelihood is usually consistent if we
use the correct model in our analysis. When we use
the wrong model, there are few guarantees”. The fun-
damental problem here is that there is no empirical
means to determine whether the model accurately
reflects the process by which the characters really
evolved. So, to paraphrase Popper (1983, p. 79), even
if the model is true, there is no way to know that it is
true.
A proxy criterion for evaluating models in an abso-

lute sense is to compare the fit of the data to a variety
of alternatives, and select the one with the highest like-
lihood. Of course, the more parameters one adds to a
model, the better a fit to the data it is likely to achieve,
and to balance this infinite regress of complexity,
parameter-rich models are penalized formulaically by
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various “information criteria”. But comparing relative
fits of data to models begs the question of how well
the model fits the data from an absolute perspective.
Gatesy (2007, p. 509) offered the following pungent
simile:

“Given the simplicity of most models, it is possible that

model selection in modern systematics is analogous to an

overweight man shopping in the petites department of a

women’s clothing store. A particular garment might fit the

portly man best, but this does not imply a good overall fit.”

This metaphor, just as comparative model fitting
itself, is an instance of “the principle of the drunk-
ard’s search” (Kaplan, 1964), in which the drunkard
hunts for a lost wallet under a streetlight because
that is where the light is, rather than where the wal-
let is. The rationale that “we seek models that are
good approximations of reality given that reality
itself is unknowable” (Kelchner and Thomas, 2007,
p. 87)—constraining one’s search for truth to the
realm of tractable model space—is hardly a “realist”
approach. There is no “accuracy” if you are aiming
at a nonexistent target (see further discussion of
these issues in Brower, 2016). A troubling implica-
tion of this disconnect is that models selected under
such circumstances are quite unlikely to be statisti-
cally consistent. And even if they were, how would
you know?

Induction and parsimony

“If no other coins are available for testing, consistent infer-

ence is not possible.”

(Goldman, 1990, p. 348)

Many authors have noted that the history of life is a
singular event (Wenzel and Carpenter, 1994; Siddall
and Kluge, 1997; Kluge, 2005; Brower, 2010). If that
is true, it seems that Goldman’s coin-flipping critique,
above, also applies to phylogenetic inference. In order
to be amenable to statistical testing, various unrealis-
tic, or at least not demonstrably realistic, assumptions
about the evidence must be made. The notion of statis-
tical consistency as applied to phylogenetic data makes
the standard statistical assumptions that characters are
independent and drawn from an identical distribution
(IID). Siddall and Kluge (1997), Siddall (1998) and
Farris (1999) attacked Felsenstein’s (1973) reliance on
Wald’s (1949) demonstration that likelihood is consis-
tent, and in response Felsenstein (2004, p. 271) offered
a “proof” that as far as I can tell assumes a priori
what it is intended to prove: “Let us assume that char-
acters evolve independently according to the same
Markov process.” Searching under the streetlight
again.
Pickett et al. (2005) claimed not only that phyloge-

netic data often are not homogeneous (IID), but also

that when they are not, parsimony can get back on
track to consistency by the addition of new data that
exhibit heterotachy (within site rate heterogeneity
among branches). Although that observation may be
valid, it seems to cede the ground to its opponents
that statistical consistency is a criterion we ought to
be concerned about (not to mention that in order to
determine what was consistent and what was not,
Pickett et al. needed an a priori idea of the truth—in
that case, their test criterion was monophyly of the
vespid wasp genus Apoica). Generally speaking, in
order to recognize “long-branch attraction” as a phe-
nomenon of potential concern in the first place, one
must have an a priori idea that the relationship
implied by the joining of those branches is not cor-
rect. Finally, the broader validity of Pickett et al.’s
rescue by heterotachy observation is unknowable: as
Sober (1993) argued, results of experimental phyloge-
netic studies cannot be extrapolated into general prin-
ciples.
Whether or not phylogenetic data are IID, statisti-

cal models assume that they are. This is a uniformi-
tarian, inductive parsimony assumption that “the
future resembles the past” or, more aptly for phyloge-
netic inference, the past resembles the present. When
numbers are used to quantify empirical entities and
phenomena in the physical world, they become prone
to error. This is not simply statistical error, like the
standard deviation around a mean, but systematic
error, if the assumptions upon which the means of
quantification and the attributes of the things being
quantified do not align. If, for example, the probabil-
ity of a coin toss landing heads is not fixed and might
vary arbitrarily through time, then no number of
tosses will yield an accurate estimate of the probabil-
ity of getting heads into the future. The “law of large
numbers,” the statistical premise that as the sample
size increases, the estimate approaches with greater
precision and accuracy the population parameter,
plainly rests upon the assumption that the future will
rigidly resemble the past. Sober (2015, p. 285) made a
similar point:

“. . .maximum likelihood is statistically consistent. . ..The perti-

nent Humean point about this claim concerning statistical

consistency is that the claim’s justification depends upon

assumptions that go beyond the observations you have made

to date. You are assuming that the coin is an i.i.d. system -

that past, present and future tosses are independent of each

other and there is a single probability of heads that applies to

past, present and future tosses.”

Or, as Hume (1748) would have said, the claim of sta-
tistical consistency is inductive and cannot be substan-
tiated in any empirical instance, let alone justified as a
general principle. Thus, it plainly holds no force what-
soever as a criticism of cladistic parsimony or any
other phylogenetic method.
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Conclusion

This essay aims to debunk a persistent myth about a
critical failing of parsimony in phylogenetic inference as
a rationale for model-based approaches. The object is
not to show that parsimony is superior, but merely to
remove an arrow from the quiver of its critics. Goloboff
et al. (2017) have noted that the cutting edge of the
controversy over competing methods has moved on,
that many recent models may themselves be inconsis-
tent estimators, about which their authors no longer
seem to care. That literature is dense, dispersed and
technically complex, and fundamental assumptions of a
given approach may be buried in the “flute music”. Of
course, quantitative complexity provides no more a
guarantee of realism than does statistical consistency.
There is no escape from philosophy when we are asking
questions like “what is real?”, even in regard to seem-
ingly simple problems like preferring one phylogenetic
hypothesis over another. As Goloboff et al. (2017)
observed, “considering that methods can be justified
only with statistical principles is itself a ‘philosophical’
position”. The very modest, and hardly original point
here, which I hope is expressed in a manner intelligible
to systematists, teachers and students, is that the con-
ventional wisdom that potential for statistical inconsis-
tency offers a reason to reject parsimony is false.
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